

This article was downloaded by:

On: 25 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Temperature Effect On The Extraction Of Am(iii), U(vi), And Sr(ii) By Dialkyl-substituted Alkylenediphosphonic Acids

E. O. Otu^a; R. Chiarizia^b

^a Department of Chemistry, Indiana University Southeast, New Albany, Indiana, USA ^b Chemistry Division, Argonne National Laboratory, Argonne, Illinois, USA

Online publication date: 07 September 2003

To cite this Article Otu, E. O. and Chiarizia, R.(2003) 'Temperature Effect On The Extraction Of Am(iii), U(vi), And Sr(ii) By Dialkyl-substituted Alkylenediphosphonic Acids', Separation Science and Technology, 38: 12, 2619 – 2636

To link to this Article: DOI: 10.1081/SS-120022563

URL: <http://dx.doi.org/10.1081/SS-120022563>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SEPARATION SCIENCE AND TECHNOLOGY

Vol. 38, Nos. 12 & 13, pp. 2619–2636, 2003

Temperature Effect on the Extraction of Am(III), U(VI), and Sr(II) by Dialkyl-Substituted Alkylidendiphosphonic Acids[#]

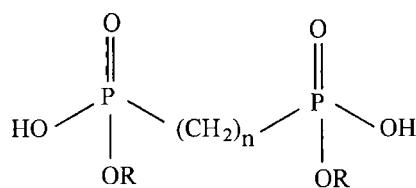
E. O. Otu¹ and R. Chiarizia^{2,*}¹Department of Chemistry, Indiana University Southeast,
New Albany, Indiana, USA²Chemistry Division, Argonne National Laboratory,
Argonne, Illinois, USA

ABSTRACT

Solvent extraction reagents containing the diphosphonic acid group exhibit extraordinary affinity for tri-, tetra-, and hexavalent actinides. Use of these reagents has been proposed for actinide separation and preconcentration procedures. A new extractant, P,P'-di(2-ethylhexyl) benzene-1,2-diphosphonic acid (H₂DEH[1,2-BzDP]), has been synthesized. Its metal extraction characteristics are reported and compared to the previously synthesized P,P'-di(2-ethylhexyl) methylene-(H₂DEH[MDP]), ethylene-(H₂DEH[EDP]), and

[#]The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. W-31-109-ENG-38. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

*Correspondence: R. Chiarizia, Chemistry Division, Argonne National Laboratory, Argonne, IL 60439, USA; E-mail: chiarizia@anlchm.chm.anl.gov.


2619

butylene-(H₂DEH[BuDP]) diphosphonic acids. Different degrees of aggregation and different extraction mechanisms and stoichiometries have been reported for these ligands.

In this work, thermodynamic parameters associated with the extraction of selected metal ions by these ligands were measured to provide further insight into the mechanism of the extraction processes involved. Knowledge of the enthalpy, entropy, and free-energy changes, in combination with other fundamental principles governing extraction of metal ions by these ligands will increase their usefulness in liquid-liquid extraction. Thermodynamic parameters of the extraction process were determined by the temperature dependence of the distribution ratio in the temperature range of 25 to 60°C. Neither the aggregation state of the free ligands nor the extraction stoichiometries at trace metal concentration level change in the whole range of temperatures investigated. The effect of temperature on the extraction of ²⁴¹Am, ²³³U, and ⁸⁵Sr from HNO₃ solutions by *o*-xylene solutions of the extractants are reported.

INTRODUCTION

A general formula for some previously developed solvent extraction reagents of the P,P'-di(alkyl) alkylenediphosphonic acid type is shown in Structure I, where R is the 2-ethylhexyl group, and n is 1, 2, or 4, for P,P'-di(2-ethylhexyl) methylene-(H₂DEH[MDP]), ethylene-(H₂DEH[EDP]), and butylene-(H₂DEH[BuDP]) diphosphonic acid, respectively.

The length of the alkylene chain separating the two P atoms of the extractant molecule affects the aggregation state of the extractant. In toluene, H₂DEH[MDP] is dimeric, while H₂DEH[EDP] forms hexameric, spherical aggregates and H₂DEH[BuDP] exists predominantly in the form of trimeric aggregates.^[1-6]

As part of our ongoing work with diphosphonic acids, we are studying new compounds, the P,P'-di(2-ethylhexyl) benzene-diphosphonic acids,

where the benzene ring bridges the two phosphorus centers. We synthesized and characterized P,P'-di(2-ethylhexyl) benzene-1,2-diphosphonic acid, H₂DEH[1,2-BzDP].

Based on the separation between the two phosphorus atoms, H₂DEH[1,2-BzDP] can be compared to H₂DEH[EDP]. However, the rigidity introduced in H₂DEH[1,2-BzDP] by the benzene ring could make it behave more like H₂DEH[MDP]. Because of this rigidity, it was expected that H₂DEH[1,2-BzDP] would behave more similarly to H₂DEH[MDP] than H₂DEH[EDP]. The synthesis, characterization, and metal extraction characteristics of P,P'-di(2-ethylhexyl) benzene-1,3-diphosphonic acid and P,P'-di(2-ethylhexyl) benzene-1,4-diphosphonic acid isomers are currently under study. These diphosphonic acids have the phosphorus centers preorganized for metal extraction. This should reflect in their metal solvent extraction chemistry.

Solvent extraction reagents containing the diphosphonic acid group, the solvent extraction equivalent of the Diphonix resin,^[7] exhibit extraordinary affinity for tri-, tetra-, and hexavalent actinides. Use of these reagents was proposed for actinide separation and preconcentration procedures.^[8] The effect of the aggregation state of the di(2-ethylhexyl) alkylidenediphosphonic acids on their metal solvent extraction chemistry was investigated in some detail.^[6,9–11] The extractant and acid dependencies for the extraction of Am(III), U(VI), and Sr(II) by these extractants have also been reported. Based on these previous works, it is known that metal–ion extraction processes and the type of metal–extractant complexes formed in the organic phase are different for the acids investigated.

With H₂DEH[MDP], ions transfer from the aqueous to the organic phase to become part of a complex involving two extractant dimers and a large number of chelate rings (four 6-membered and three 8-membered rings).^[4,10] For this type of bonding to occur, it is likely that complete dehydration of the cation is required. In the case of H₂DEH[EDP], where the extraction process is reminiscent of a micellar extraction, the metal cation can be transferred into the organic phase as hexameric aggregates retaining some of its water of hydration.^[9] Furthermore, the chelate rings formed through coordination of the metal to the P=O and POO[–] groups of the extractant should be 7- and 8-membered, respectively. Therefore, they are less stable than in the H₂DEH[MDP] case. With H₂DEH[BuDP], interaction of the cation with the extractant trimers included in the complex should only involve formation of very large and unstable chelate rings.^[6]

Given the pronounced differences in extraction processes and type of metal species formed in the organic phase, it seems reasonable to expect that the extraction of metal ions by H₂DEH[MDP], H₂DEH[EDP], and H₂DEH[BuDP] should be accompanied by different enthalpic and entropic contributions to the overall stability of the species formed.

The objective of this work was to gain information on the thermodynamics of metal-solvent extraction by the di(2-ethylhexyl) diphosphonic acids, by using the method of the temperature coefficient of the metal distribution ratio. The enthalpy and entropy changes upon metal complexation should shed further light on the metal extraction processes. The extraction of Am(III) and Sr(II) by P,P'-di(2-ethylhexyl) benzene-1,2-diphosphonic acid, H₂DEH[1,2-BzDP], are reported and compared with previous results with the di(2-ethylhexyl) alkylidendiphosphonic acids. Although U(VI) data with H₂DEH[1,2-BzDP] are not available, results with H₂DEH[MDP], H₂DEH[EDP] and H₂DEH[BuDP] are included for a fuller comparison among the di(2-ethylhexyl) diphosphonic acids.

EXPERIMENTAL

Materials

Freshly prepared ²³³U and ²⁴¹Am were obtained from ANL stocks. ⁸⁵Sr was obtained from Isotope Products Laboratories (Burbank, CA). The extractants were prepared and purified as described in previous works.^[6,9,10] Extractant solutions were prepared by dissolving weighed amounts of the extractants in *o*-xylene (HPLC grade, Aldrich Chemical Co., Milwaukee, WI). The extractant concentrations were in the 10⁻³ to 10⁻¹ M range. Tracer level aqueous metal ion concentration solutions were prepared using Ultrex reagent nitric acid (J.T. Baker Chemical Co. Sanford, ME, USA) and water from a Milli-Q2 purification system. The aqueous phase nitric acid concentrations varied in the range 0.01 to 7 M.

Procedures

Aggregation Measurements

The aggregation of H₂DEH[MDP], H₂DEH[EDP], and H₂DEH[BuDP] in toluene (a more convenient diluent than *o*-xylene for VPO measurements) at various temperatures was measured by vapor pressure osmometry (VPO) using a Jupiter Model 833 vapor pressure osmometer as described previously.^[2] The instrument was calibrated at each temperature of interest using toluene solutions of sucrose octaacetate as the monomeric standard. The aggregation measurements of H₂DEH[1,2-BzDP] were studied in a similar manner, and the details are reported elsewhere.^[12]

Distribution Ratio Measurements

The distribution ratios, D, defined as the ratio of metal concentrations in the organic and aqueous phase, were measured following the procedure reported earlier.^[13] Duplicate extractions were performed at various temperatures, and duplicate analyses were performed on the separated phases. These duplicate experiments were used to estimate the uncertainty levels in the distribution ratio measurements. Although the uncertainty interval was substantially higher for D values greater than 10^3 , the reproducibility of the D measurements was within 5%. The measured molar D values were converted to molal values by multiplying them by the appropriate aqueous to organic phase density ratio.

RESULTS AND DISCUSSIONS

Aggregation

To employ the extraction coefficients as a function of temperature for the determination of thermodynamic parameters (as in this study), it was necessary to ascertain that the same equilibria are operative in the temperature range of interest. It is conceivable that the extractants aggregation might change as a function of temperature, which might result in a change of the metal ion extraction stoichiometry. Vapor pressure osmometric measurements were performed on toluene solutions of the extractants.

The results for the alkylene diphosphonic acids, reported in detail previously,^[13] showed that the aggregation state of the extractants did not change in the 25.0 to 60.0°C temperature range (i.e., H₂DEH[MDP] remains dimeric; H₂DEH[EDP] is essentially hexameric; and H₂DEH[BuDP] exists primarily as trimeric aggregates [$\beta_3 = (1.4 \pm 0.2) \times 10^5$] in equilibrium with low concentrations of hexameric aggregates [$\beta_6 = (1.3 \pm 0.2) \times 10^{11}$]).

The benzene diphosphonic acid solution in toluene exhibited a characteristic aggregation behavior. The results are reported in detail elsewhere.^[12] In the 25 to 60°C temperature range, the VPO measurements for freshly prepared solutions of H₂DEH[1,2-BzDP] indicated that the ligand exists predominantly as a dimer in toluene, similar to H₂DEH[MDP]. However, upon standing for about 2 weeks, precipitation occurred in both the toluene solutions and in the *o*-xylene solutions used for metal extraction. This phenomenon was not observed with the alkylene diphosphonic acids. To establish the aggregation of the extractant in the solution to be used for metal extraction, the *o*-xylene was removed from the filtrate under nitrogen, and the oily residue was taken up in toluene and dilutions made for VPO measurements. The VPO results indicated that the aged extractant is

monomeric. This instability exhibited by H₂DEH[1,2-BzDP] is the subject of another study that is underway. It is relevant for this work, however, that the degree of aggregation of aged H₂DEH[1,2-BzDP] was not affected by temperature and remained unchanged in the concentration range studied, as observed for the alkylidendiphosphonic acids.

Extraction Equilibria

The extraction stoichiometries of the target metal ions [Am(III), Sr(II), and U(VI)] at room temperature were determined previously using *o*-xylene as the diluent.^[6,9,10,12] Although the extractant aggregation did not change in the 25.0 to 60.0°C temperature range, it was necessary to redetermine the extraction stoichiometries at various temperatures. The temperature coefficient method for the determination of thermodynamic parameters is based on the condition that the same equilibria are operative in the temperature range of interest. If the extraction equilibria were different at different temperatures, the temperature coefficient method would not be applicable, and calorimetric measurements would be required.

The slopes of the acid dependencies are -3 for Am(III) and -2 for Sr(II) and U(VI), with all four extractants. These correspond to the negative values of the formal charge of the metal ions, indicating that three or two protons are always displaced from the organic phase ligands upon extraction of Am³⁺ and Sr²⁺ or UO₂²⁺, respectively. The acid dependencies at various temperatures were reported previously.^[12-14] With U(VI) and H₂DEH[EDP], however, an acid dependency slope of -2 was observed only in a small range of aqueous acidity, indicating that other extraction mechanisms, such as solvation, are possible. For the U(VI)-H₂DEH[EDP] system, therefore, the thermodynamic considerations of this article apply only in the limited set of conditions where an ideal ion exchange stoichiometry applies.

The extractant dependencies in the temperature range of this study were previously reported.^[12-14] The extractant dependencies for all the investigated systems, in the low aqueous phase acid region where ion-exchange mechanism predominates, are summarized in Table 1.

The slopes of 2 and 3 for Am(III) and Sr(II) when H₂DEH[1,2-BzDP] is the extractant indicate that these metal ions are coordinated to two and three monomeric extractant molecules, respectively. Extractant dependencies of 2 for Am(III) and Sr(II) and 1 for U(VI) when H₂DEH[MDP] is the extractant indicate that these metal ions are coordinated in the organic phase to two dimers and one dimer of the ligand, respectively. The unity extractant dependency for all metal ions when H₂DEH[EDP] is the ligand indicates that extraction may take place through a micellar-type mechanism. This is similar to other highly aggregated

Table 1. Extractant dependencies in the 25 to 60°C temperature range.

Ion	H ₂ DEH[1,2BzDP]	H ₂ DEH[MDP]	H ₂ DEH[EDP]	H ₂ DEH[BuDP] trimer
Am(III)	3.0	2.0	1.0	1.5
Sr(II)	2.0	2.0	1.0	2.0
U(VI)	ND	1.0	1.0	1.0

ND = Not determined.

extraction systems, such as dinonylnaphthalene- and didodecyl naphthalene-sulfonic acids,^[15–17] mono(2-ethylhexyl) phosphoric acid,^[18–20] and quaternary alkylammonium salts,^[21] wherein cations are extracted into the core of the extractant aggregate. The fractional value observed for Am(III) with H₂DEH[BuDP] indicates the coexistence in the *o*-xylene phase of complexes in which Am(III) is bound to one and two H₂DEH[BuDP] trimers, respectively. Sr(II) coordinates to two trimers, while U(IV) coordinates to one trimer.

In all cases, the extraction reactions remained essentially the same in the whole temperature range, although the effect of temperature on the extraction of the individual metal ions by the three extractants is remarkably different. The extraction of Am(III) and Sr(II) decreases as temperature increases for H₂DEH[1,2-BzDP] and H₂DEH[MDP]. The extractability of Am(III) by H₂DEH[EDP] is essentially not affected by temperature, whereas the extraction reaction is endothermic with H₂DEH[BuDP]. The extraction of Sr(II) decreases as temperature increases when H₂DEH[EDP] is the extractant. There is essentially no change in the extraction of Sr(II) by H₂DEH[BuDP] as a function of temperature. The extraction of U(VI) decreases as temperature increases along the series H₂DEH[MDP], H₂DEH[EDP], and H₂DEH[BuDP]. The extraction of U(VI) by H₂DEH[1,2-BzDP] was not studied.

Equilibrium Constants

Based on the acid and extractant dependencies, the extraction equation for Am(III) by the monomeric H₂DEH[1,2-BzDP] can be written as:

where H₂A stands for the diphosphonic acid, species with the bar exist in the organic phase, and charged species exist in the aqueous phase.

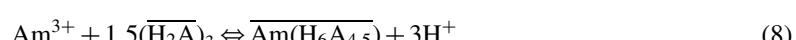


The thermodynamic equilibrium constant can be written as:

$$K_{Am,BzDP} = \frac{[\overline{Am(H_3A_3)}]}{[Am^{3+}]} \frac{[H^+]^3}{C_{H_2A}^3} \frac{\gamma_{\pm,HN}^6}{\gamma_{\pm,AN}^4} \quad (2)$$

where $\gamma_{\pm,HN}$ and $\gamma_{\pm,AN}$ are the mean molal ionic activity coefficients of HNO_3 and $Am(NO_3)_3$, respectively, and C_{H_2A} is the molal concentration of the extractant.

When nitrate complexing of the target metal ions in aqueous nitric acid medium is taken into account, the following equation can be written in the case of $Am(III)$:


The total concentration of $Am(III)$ in the aqueous phase, $[Am^{3+}]_{tot}$, can be shown to be

$$[Am^{3+}]_{tot} = [Am^{3+}] \times \left(1 + \frac{\beta_1 \gamma_{Am^{3+}} [NO_3^-] \gamma_{NO_3^-}}{\gamma_{Am(NO_3)_2^{2+}}} + \frac{\beta_2 \gamma_{Am^{3+}} [NO_3^-]^2 \gamma_{NO_3^-}^2}{\gamma_{Am(NO_3)_2^+}} \right) \quad (4)$$

where β is the formation constant for the nitrate complexes. Recognizing that the distribution ratio, D , is the ratio of the concentration of metal in the organic phase and the total concentration of metal in the aqueous phase, and introducing mean molal activity coefficients of the species in eq. (4), eq. (2) can be expressed as:

$$K_{Am,BzDP} = D \frac{[H^+]^3 \gamma_{\pm,HN}^6}{C_{H_2A}^3} \left(\frac{1}{\gamma_{\pm,AN}^4} + \frac{\beta_1 [NO_3^-]}{\gamma_{\pm,AN}^3} + \frac{\beta_2 [NO_3^-]^2}{\gamma_{\pm,AN}^2} \right) \quad (5)$$

The extraction equilibria of $Am(III)$ by the dimeric $H_2DEH[MDP]$, hexameric $H_2DEH[EDP]$, and trimeric $H_2DEH[BuDP]$ are given by eqs. (6, through 8), respectively:

Proceeding as for H₂DEH[1,2-BzDP], the corresponding thermodynamic equilibrium constant expressions can be written as follows:

$$K_{Am,MDP} = 4D \frac{[H^+]^3 \gamma_{\pm,HN}^6}{C_{H_2A}^2} \left(\frac{1}{\gamma_{\pm,AN}^4} + \frac{\beta_1[NO_3^-]}{\gamma_{\pm,AN}^3} + \frac{\beta_2[NO_3^-]^2}{\gamma_{\pm,AN}^2} \right) \quad (9)$$

$$K_{Am,EDP} = 6D \frac{[H^+]^3 \gamma_{\pm,HN}^6}{C_{H_2A}} \left(\frac{1}{\gamma_{\pm,AN}^4} + \frac{\beta_1[NO_3^-]}{\gamma_{\pm,AN}^3} + \frac{\beta_2[NO_3^-]^2}{\gamma_{\pm,AN}^2} \right) \quad (10)$$

$$K_{Am,BuDP} = D \frac{[H^+]^3 \gamma_{\pm,HN}^6}{[(H_2A)_3]^{1.5}} \left(\frac{1}{\gamma_{\pm,AN}^4} + \frac{\beta_1[NO_3^-]}{\gamma_{\pm,AN}^3} + \frac{\beta_2[NO_3^-]^2}{\gamma_{\pm,AN}^2} \right) \quad (11)$$

The concentration of the trimeric species to be used in eq. (11) can be calculated for each analytical concentration of H₂DEH[BuDP] using the β_3 and β_6 reported earlier. Equations (8 and 11) involve the approximation that Am(III) (and the other metal ions) are extracted only by trimeric H₂DEH[BuDP]. In reality, metal extraction by monomeric and hexameric extractant molecules in equilibrium with the trimer cannot be excluded a priori. The approximation should be valid, however, since the trimeric aggregate is always the predominant species under the conditions of this work.^[6,13]

Following the same procedure, the thermodynamic equilibrium constant expressions for Sr(II) and U(VI) can be written as follows:

$$K_{Sr,BzDP} = D \frac{[H^+]^2 \gamma_{\pm,HN}^4}{C_{H_2A}^2} \left(\frac{1}{\gamma_{\pm,AN}^3} + \frac{\beta_1[NO_3^-]}{\gamma_{\pm,AN}^2} + \beta_2[NO_3^-]^2 \right) \quad (12)$$

$$K_{Sr,MDP} = 4D \frac{[H^+]^2 \gamma_{\pm,HN}^4}{C_{H_2A}^2} \left(\frac{1}{\gamma_{\pm,SN}^3} + \frac{\beta_1[NO_3^-]}{\gamma_{\pm,SN}^2} + \beta_2[NO_3^-]^2 \right) \quad (13)$$

$$K_{Sr,EDP} = 6D \frac{[H^+]^2 \gamma_{\pm,HN}^4}{C_{H_2A}} \left(\frac{1}{\gamma_{\pm,SN}^3} + \frac{\beta_1[NO_3^-]}{\gamma_{\pm,SN}^2} + \beta_2[NO_3^-]^2 \right) \quad (14)$$

$$K_{Sr,BuDP} = D \frac{[H^+]^2 \gamma_{\pm,HN}^4}{[(H_2A)_3]^2} \left(\frac{1}{\gamma_{\pm,SN}^3} + \frac{\beta_1[NO_3^-]}{\gamma_{\pm,SN}^2} + \beta_2[NO_3^-]^2 \right) \quad (15)$$

$$K_{U,MDP} = 2D \frac{[H^+]^2 \gamma_{\pm,HN}^4}{C_{H_2A}} \left(\frac{1}{\gamma_{\pm,UN}^3} + \frac{\beta_1[NO_3^-]}{\gamma_{\pm,UN}^2} + \beta_2[NO_3^-]^2 \right) \quad (16)$$

$$K_{U,EDP} = 6D \frac{[H^+]^2 \gamma_{\pm,HN}^4}{C_{H_2A}} \left(\frac{1}{\gamma_{\pm,UN}^3} + \frac{\beta_1[NO_3^-]}{\gamma_{\pm,UN}^2} + \beta_2[NO_3^-]^2 \right) \quad (17)$$

$$K_{U,BuDP} = D \frac{[H^+]^2 \gamma_{\pm,HN}^4}{[(H_2A)_3]} \left(\frac{1}{\gamma_{\pm,UN}^3} + \frac{\beta_1[NO_3^-]}{\gamma_{\pm,UN}^2} + \beta_2[NO_3^-]^2 \right) \quad (18)$$

where $\gamma_{\pm,SN}$ and $\gamma_{\pm,UN}$ are the mean molal ionic activity coefficients of $\text{Sr}(\text{NO}_3)_2$ and $\text{UO}_2(\text{NO}_3)_2$, respectively.

The following β values were taken from the literature^[22]: $\beta_1 = 1.82$ for Am(III), $\beta_1 = 6.3$ and $\beta_2 = 6.3$ for Sr(II), and $\beta_1 = 0.5$ for U(VI). The mean molal ionic activity coefficients of americium, (europium chloride was used as a stand-in), strontium, and uranyl nitrates at tracer concentration level in solutions of HNO_3 at the relevant ionic strengths were calculated according to the method of Kusik and Meissner.^[23]

The values of the thermodynamic equilibrium constants calculated at different temperatures are given in Table 2. For these calculations, the variation of the activity coefficients with temperature was neglected. The uncertainties in these equilibrium constant values are for Am(III) 0.1 and for Sr(II) 0.13, 0.01, 0.05, and 0.03 log units for $\text{H}_2\text{DEH}[1,2\text{-BzDP}]$, $\text{H}_2\text{DEH}[MDP]$, $\text{H}_2\text{DEH}[EDP]$, and $\text{H}_2\text{DEH}[BuDP]$, respectively; for U(VI) 0.08, 0.13, 0.06 log units for $\text{H}_2\text{DEH}[MDP]$, $\text{H}_2\text{DEH}[EDP]$, and $\text{H}_2\text{DEH}[BuDP]$, respectively. These uncertainties are the average standard errors estimated from statistical analysis of the log K data at each temperature for the different acid and ligand concentrations included in this study.

The K values in Table 2 clearly reflect the fact that the diphosphonic acids are very good extractants for the target metal ions [especially Am(III) and U(VI)], with the order being $\text{H}_2\text{DEH}[1,2\text{-BzDP}] > \text{H}_2\text{DEH}[MDP] > \text{H}_2\text{DEH}[EDP] > \text{H}_2\text{DEH}[BuDP]$ for Am(III) and Sr(II), and $\text{H}_2\text{DEH}[EDP] > \text{H}_2\text{DEH}[MDP] > \text{H}_2\text{DEH}[BuDP]$ for U(VI). The ordering for the alkylene-diphosphonic acids is similar to previous reports at room temperature.^[6,9,10]

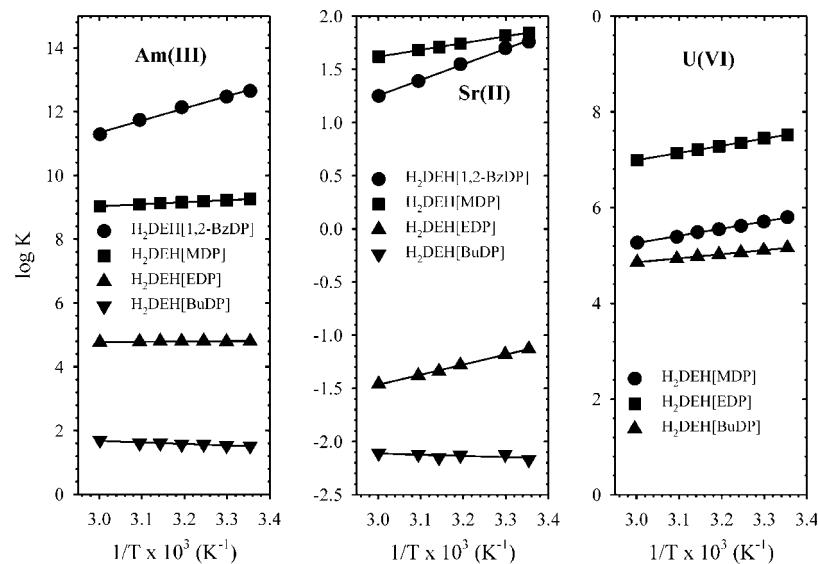
It should be noted that neglecting nitrate complexation of the metal ions in the aqueous phase would yield values that are only 2 to 5% lower than those reported in Table 2 and would not affect the discussion of the efficiency of these extractants and the conclusions about the thermodynamic parameters controlling the extraction process for the extractants.

Dialkyl-Substituted Alkylenediphosphonic Acids

2629

Table 2. Thermodynamic equilibrium constants for the extraction of Am(III), Sr(II), and U(VI) by H₂DEH[1,2-BzDP], H₂DEH[MDP], H₂DEH[EDP], and H₂DEH[BuDP] in *o*-xylene.

T (°C)	Log K Am(III)				log K Sr(II)				log K U(VI)		
	BzDP	MDP	EDP	BuDP	BzDP	MDP	EDP	BuDP	MDP	EDP	BuDP
25	12.65	9.26	4.80	1.52	1.76	1.84	-1.13	-2.17	5.80	7.52	5.16
30	12.47	9.22	4.79	1.53	1.70	1.82	-1.18	-2.12	5.71	7.45	5.11
35	—	9.19	4.81	1.57	—	—	—	—	5.62	7.35	5.06
40	12.14	9.16	4.80	1.57	1.55	1.74	-1.28	-2.13	5.55	7.28	5.02
45	—	9.13	4.80	1.61	—	1.71	-1.34	-2.15	5.49	7.21	4.98
50	11.74	9.09	4.79	1.62	1.39	1.68	-1.38	-2.12	5.39	7.14	4.93
60	11.29	9.03	4.77	1.70	1.25	1.62	-1.46	-2.11	5.27	6.99	4.86


Free Energy, Enthalpy, and Entropy Changes

The Gibbs–Helmholtz equation can be written in the form:

$$\log K = -\frac{\Delta H^0}{2.303RT} + \frac{\Delta S^0}{2.303R} \quad (19)$$

where R ($8.314 \text{ JK}^{-1} \text{ mol}^{-1}$) is the gas constant. The enthalpy and entropy changes of the extraction processes were calculated from the slopes ($-\Delta H^0/2.303R$) and intercepts ($\Delta S^0/2.303R$), respectively, of the plots of $\log K$ vs $\frac{1}{T}$. Previously discussed conditions regarding the constancy of ΔH^0 and aqueous phase activity coefficients over the temperature range investigated apply here as well.^[24–27] The plots of the average $\log K$ for each metal ion vs $\frac{1}{T}$ are shown in Fig. 1. The lines in these plots were obtained through the linear regression features of the program Origin (version 3.5, Microcal Software, Inc., Northampton, MA, USA).

The figure shows that the extraction of Am(III) is more exothermic for $\text{H}_2\text{DEH}[1,2\text{-BzDP}]$ than for $\text{H}_2\text{DEH}[\text{MDP}]$, thermoneutral for $\text{H}_2\text{DEH}[\text{EDP}]$, and endothermic for $\text{H}_2\text{DEH}[\text{BuDP}]$. The extraction of Sr(II)

Figure 1. Effect of temperature on the extraction of AM(III), SR(II), and U(VI) from aqueous HNO_3 by $\text{H}_2\text{DEH}[1,2\text{-BzDP}]$, $\text{H}_2\text{DEH}[\text{MDP}]$, $\text{H}_2\text{DEH}[\text{EDP}]$, and $\text{H}_2\text{DEH}[\text{BuDP}]$ in *o*-xylene.

is exothermic for H₂DEH[1,2-BzDP], H₂DEH[MDP], and H₂DEH[EDP], and only slightly endothermic for H₂DEH[BuDP]. The extraction of U(VI) by the three alkylene diphosphonic acids is exothermic.

The ΔH⁰ and ΔS⁰ values calculated from the plots, along with the ΔG⁰ values calculated from $\Delta G^0 = -2.303 RT \log K$ are given in Table 3. The uncertainties reported for ΔH⁰ and ΔS⁰ are the standard errors of the slopes and intercepts, respectively. Those for ΔG⁰ were obtained from the standard error of log K.

In the extraction of a metal cation by a liquid-cation exchanger, the net enthalpy and entropy variations of the extraction reaction are the result of several different processes. The dehydration of the metal cation generally involves a positive enthalpy variation (ΔH > 0) as a result of the breakage of ion–water bonds, and a positive entropy variation (ΔS > 0) due to an increase of disorder in the system by the release of coordinated water. The opposite will occur for the hydration of the proton(s) lost by the ligand. On the other hand, metal coordination by the organic ligand will result in a negative enthalpy variation (ΔH < 0), as a consequence of replacing relatively weak hydrogen bonds (typical of organophosphorus acids) with stronger metal coordination bonds, and in a negative entropy variation (ΔS < 0), due to the increase of order caused by the new bonds. The deprotonation of the extractant produces opposite effects.

The trend in ΔH⁰ can be interpreted as arising from the formation of progressively less stable chelate rings along this series. A favorable enthalpic

Table 3. Thermodynamic parameters for the extraction of Am(III), Sr(II), and U(VI) by H₂DEH[1,2-BzDP], H₂DEH[MDP], H₂DEH[EDP], and H₂DEH[BuDP] in *o*-xylene.

Ion	Extractant	ΔG ⁰ at 25°C	ΔH ⁰	ΔS ⁰ at 25°C
		kJ/mol	kJ/mol	J/mol/K
Am(III)	H ₂ DEH[1,2-BzDP]	−72.4 ± 0.4	−73.0 ± 3.8	−2 ± 12
	H ₂ DEH[MDP]	−52.9 ± 0.6	−12.3 ± 0.3	136 ± 2
	H ₂ DEH[EDP]	−27.4 ± 0.6	−1.3 ± 0.7	88 ± 3
	H ₂ DEH[BuDP]	−8.7 ± 0.7	9.5 ± 0.9	61 ± 4
Sr(II)	H ₂ DEH[1,2-BzDP]	−10.1 ± 0.7	−27.9 ± 0.8	−60 ± 2
	H ₂ DEH[MDP]	−10.5 ± 0.1	−12.3 ± 0.4	−6 ± 1
	H ₂ DEH[EDP]	6.5 ± 0.3	−18.2 ± 0.4	−83 ± 2
	H ₂ DEH[BuDP]	12.4 ± 0.2	2.1 ± 1.2	−35 ± 4
U(VI)	H ₂ DEH[MDP]	−33.1 ± 0.5	−28.8 ± 0.7	14 ± 3
	H ₂ DEH[EDP]	−42.9 ± 0.6	−28.8 ± 0.5	47 ± 3
	H ₂ DEH[BuDP]	−29.5 ± 0.3	−16.3 ± 0.3	44 ± 2

term is observed for Am(III) extraction by H₂DEH[1,2-BzDP] and H₂DEH[MDP]. Am(III) can form highly stable 6- and 7-membered chelate rings with these ligands. The extraction of Am(III) by H₂DEH[1,2-BzDP], unlike H₂DEH[MDP] and the other alkylenedisophosphonic acids, is not facilitated by a favorable entropic term, as typically observed for the formation of chelate complexes.^[28] This result suggests no overall change in ordering of the system when Am(III) is extracted by H₂DEH[1,2-BzDP]. The almost zero or positive enthalpy change with an attendant favorable entropy change confirm, for H₂DEH[EDP] and for H₂DEH[BuDP], a micellar-like type of Am(III) extraction process.^[13,25,29]

The extraction of Sr(II) by H₂DEH[1,2-BzDP] and H₂DEH[MDP] is enthalpy driven. However, H₂DEH[1,2-BzDP] complexes Sr(II) more strongly. With H₂DEH[EDP] and H₂DEH[BuDP], Sr(II) extraction is very inefficient, as indicated by the positive values of ΔG^0 , as a result of strongly unfavorable entropy changes. The H₂DEH[EDP] results are indicative of strong metal-ligand coordination and attendant increased ordering in the organic phase. The negative entropy changes observed for the extractants also suggest that the ordering caused by hydration of the exchanged protons predominates over the dehydration of the metal ion in the aqueous phase. The observed entropy changes with H₂DEH[EDP] and H₂DEH[BuDP], and enthalpy changes with H₂DEH[EDP], do not suggest a micellar-type extraction mechanism for Sr(II), as was the case with Am(III).

The extraction of U(VI) by all three extractants is strongly driven by both favorable enthalpy and entropy variations, which testifies to the extremely high affinity exhibited, especially by H₂DEH[MDP] and H₂DEH[EDP], for U(VI), even in moderately high aqueous phase acid concentrations. The negative enthalpy change associated with metal coordination predominates over the other opposing enthalpic factors (metal ion dehydration, etc.). The favorable enthalpic changes observed for the extraction of U(VI) by H₂DEH[EDP] and H₂DEH[BuDP] do not suggest the weak bonding reminiscent of a micellar extraction mechanism as observed with Am(III) but, rather, the formation of highly stable complexes as with H₂DEH[MDP]. However, the larger entropy changes associated with H₂DEH[EDP] and H₂DEH[BuDP] in comparison to H₂DEH[MDP] suggest that a micellar extraction mechanism may be operative with these two extractants along with strong bonding.

The increasing ΔS^0 values observed for U(VI) extraction along the series H₂DEH[MDP], H₂DEH[EDP], and H₂DEH[BuDP], may be due, to some degree, to the overlapping of a solvation mechanism with the ion exchange mechanism.^[14] Extraction of uranyl nitrate by alkylphosphoric acids as solvated complexes at relatively high aqueous acidities is well

known,^[30] and was reported for alkylenediphosphonic acids as well.^[6,9,10] In a solvation mechanism, the neutral salt is transferred into the organic phase without simultaneous transfer of protons in the other direction. Consequently, the positive entropy variation associated with the dehydration of the extracted cation and anions dominates the net entropy variation. A solvation mechanism is more likely for extractants that have more basic P=O group, as observed along the H₂DEH[MDP], H₂DEH[EDP], H₂DEH[BuDP] series,^[31] and would help in explaining, at least in part, the ΔS^0 trend reported for U(VI) in Table 3.

CONCLUSION

Thermodynamic parameters for the extraction of Am(III) and Sr(II) from aqueous HNO₃ solutions by *o*-xylene solutions of a new diphosphonic acid extractant, P,P'-di(2-ethylhexyl) benzene-1,2-diphosphonic acid (H₂DEH[1,2-BzDP]) were measured in the 25.0 to 60.0°C temperature range. The fact that the aggregation state of this extractant and the acid and extractant dependencies did not change with temperature allowed for the use of the temperature coefficient method to obtain the thermodynamic equilibrium constants and enthalpy changes for the metal distribution. The previously determined thermodynamic parameters with H₂DEH[MDP], H₂DEH[EDP], and H₂DEH[BuDP] were compared to those of this new extractant.

The extraction of Am(III) and Sr(II) by H₂DEH[1,2-BzDP] is strongly driven by enthalpy changes associated with the extraction process. Am(III) is extracted with essentially no change in ordering of the system, whereas the entropy change for the extraction of Sr(II) implies increased ordering, indicating that the hydration of the exchanged protons predominates over the dehydration of the aqueous phase metal ion.

The extractability of Am(III) follows the order H₂DEH[1,2-BzDP] > H₂DEH[MDP] > H₂DEH[EDP] > H₂DEH[BuDP]. The order of extraction of Sr(II) is H₂DEH[MDP] ≈ H₂DEH[1,2-BzDP] > H₂DEH[EDP] > H₂DEH[BuDP]. As anticipated, H₂DEH[1,2-BzDP] behaves more similarly to H₂DEH[MDP] than to H₂DEH[EDP]. This seems to indicate that the ligand preorganization introduced in the H₂DEH[1,2-BzDP] molecule by the rigid benzene ring has a stronger positive effect on the stability of the metal complexes than the negative effect due to an increase of the number of carbon atoms separating the two phosphorus atoms.

ACKNOWLEDGMENTS

This work was funded by the Office of Basic Energy Sciences, Division of Chemical Sciences, U.S. Department of Energy under contract number W-31-109-ENG-38. We thank P.G. Rickert of ANL for the preparation and purification of the extractants and K.L. Nash for helpful discussions.

REFERENCES

1. Herlinger, A.W.; Ferraro, J.R.; Chiarizia, R.; Horwitz, E.P. An investigation of P,P'-di(2-ethylhexyl) methanediphosphonic acid and some of its metal complexes. *Polyhedron* **1997**, *16*, 1843.
2. Herlinger, A.W.; Chiarizia, R.; Ferraro, J.R.; Rickert, P.G.; Horwitz, E.P. Metal extraction by alkyl substituted diphosphonic acids. Part 2: P,P'-di(2-ethylhexyl) ethanediphosphonic acid aggregation and IR study. *Solvent Extr. Ion Exch.* **1997**, *15*, 401.
3. Chiarizia, R.; Urban, V.; Thiagarajan, P.; Herlinger, A.W. Aggregation of P,P'-di(2-ethylhexyl) methanediphosphonic acid and its Fe(III) complexes. *Solvent Extr. Ion Exch.* **1998**, *16*, 1257.
4. Chiarizia, R.; Urban, V.; Thiagarajan, P.; Herlinger, A.W. Aggregation of complexes formed in the extraction of selected metal cations by P,P'-Di(2-ethylhexyl) methanediphosphonic acid. *Solvent Extr. Ion Exch.* **1999**, *17*, 113.
5. Chiarizia, R.; Urban, V.; Thiagarajan, P.; Herlinger, A.W. SANS study of aggregation of complexes formed in the extraction of selected metal cations by P,P'-di(2-ethylhexyl) ethane- and butane-diphosphonic acids. *Solvent Extr. Ion Exch.* **1999**, *17*, 1171.
6. Chiarizia, R.; Herlinger, A.W.; Cheng, Y.D.; Ferraro, J.R.; Rickert, P.G.; Horwitz, E.P. Metal extraction by alkyl substituted diphosphonic acids. Part 4: P,P'-di(2-ethylhexyl) butanediphosphonic acid. *Solvent Extr. Ion Exch.* **1998**, *16*, 505.
7. Chiarizia, R.; Horwitz, E.P.; Alexandratos, S.D.; Gula, M.J. Diphonix resin: A review of its properties and applications. *Sep. Sci. Technol.* **1997**, *32*, 1.
8. Horwitz, E.P.; Chiarizia, R.; Dietz, M.L. DIPEX: A new extraction chromatographic material for the separation and preconcentration of actinides from aqueous solutions. *React. Funct. Polym.* **1997**, *33*, 25, and Method for the Chromatographic Separation of Cations from Aqueous Samples. US Patent 5,651,883, 1997.

9. Chiarizia, R.; Herlinger, A.W.; Horwitz, E.P. Metal extraction by alkyl substituted diphosphonic acids. Part 3: P,P'-di(2-ethylhexyl) ethanediphosphonic acid solvent extraction study. *Solvent Extr. Ion Exch.* **1997**, *15*, 417.
10. Chiarizia, R.; Horwitz, E.P.; Rickert, P.G.; Herlinger, A.W. Metal extraction by alkyl substituted diphosphonic acids. Part 1: P,P'-di(2-ethylhexyl) methanediphosphonic acid. *Solvent Extr. Ion Exch.* **1996**, *14*, 773.
11. Chiarizia, R.; Barrans, R.E.; Ferraro, J.R.; Herlinger, A.W.; McAlister, D.R. Aggregation of dialkyl-substituted diphosphonic acids and its effect on metal ion extraction. *Sep. Sci. Technol.* **2001**, *36*, 687.
12. Otu, E.O.; Chiarizia, R.; Nash, K.; Rickert, P.G. The Extraction of Americium and Strontium by P,P'-Di(2-ethylhexyl) Benzene-1,2-Diphosphonic Acid. *Solvent Extr. Ion Exch.*, **2002**, *20*, 607.
13. Otu, E.O.; Chiarizia, R. Temperature effects in the extraction of metal ions by dialkyl-substituted diphosphonic acids. Part I: The Am(III) case. *Solvent Extr. Ion Exch.* **2001**, *19*, 885.
14. Otu, E.O.; Chiarizia, R. Thermodynamics of the extraction of metal ions by dialkyl-substituted diphosphonic acids. Part II: The U(VI) and Sr(II) case. *Solvent Extr. Ion Exch.* **2001**, *19*, 1017.
15. Högfeldt, E.; Chiarizia, R.; Danesi, P.R.; Soldatov, V.S. Structure and ion-exchange properties of dinonylnaphthalenesulfonic acid and its salts. *Chem. Scripta* **1981**, *18*, 13.
16. Lumetta, G.J.; Moyer, B.A.; Johnson, P.A.; Wilson, N.M. Extraction of Zn(II) ion by didodecylnaphthalenesulfonic acid (HDNNS) in carbon tetrachloride: the role of aggregation. *Solvent Extr. Ion Exch.* **1991**, *9*, 155.
17. Moyer, B.A.; Baes, C.F., Jr.; Case, G.N.; Lumetta, G.J.; Wilson, N.M. Equilibrium analysis of aggregation behavior in the solvent extraction of Cu(II) from sulfuric acid by didodecylnaphthalenesulfonic acid. *Sep. Sci. Technol.* **1993**, *28*, 81.
18. Peppard, D.F.; Mason, G.W.; Driscoll, W.J.; Sironen, R.J. Acidic esters of orthophosphoric acid as selective extractants for metallic cations - tracer studies. *J. Inorg. Nucl. Chem.* **1958**, *7*, 276.
19. Rao, G.S.; Mason, G.W.; Peppard, D.F. Extraction of selected metallic cations by di-acidic phosphorus-based extractants, XPO(OH)2, in a ketone diluent. *J. Inorg. Nucl. Chem.* **1966**, *28*, 887.
20. Mason, G.W.; McCarty, S.; Peppard, D.F. Synergistic effects in the extraction of selected metallic cations by mono (2-ethyl hexyl) phosphoric acid. *J. Inorg. Nucl. Chem.* **1962**, *24*, 967.

21. Chiarizia, R.; Gatrone, R.C.; Horwitz, E.P. Am(III) and Eu(III) extraction by aliquat 336 and benzyl substituted quaternary ammonium salts from nitrate and thiocyanate solutions. *Solvent Extr. Ion Exch.* **1995**, *13*, 615.
22. Kotrlá, S.; Šúcha, L. *Handbook of Chemical Equilibria in Analytical Chemistry*; J. Wiley & Sons: New York, 1985; 116–117.
23. Kusik, C.L.; Meissner, H.P. Electrolyte activity coefficients in inorganic processing, in fundamental aspects of hydrometallurgical processes. *AIChE Symp. Ser.* **1978**, *173*, 14–20.
24. Westland, A.D.; Otu, E.O. The thermodynamics of extraction of some lanthanides and other ions by 2-ethylhexylhydrogen-p-phenylphosphonate. *Solvent Extr. Ion Exch.* **1991**, *9*, 607.
25. Otu, E.O.; Westland, A.D. The thermodynamics of extraction of some lanthanides and other ions by dinonylnaphthalenesulfonic acid. *Solvent Extr. Ion Exch.* **1990**, *8*, 827.
26. Otu, E.O. The effect of temperature on the synergistic extraction of thorium(IV) and uranium(VI) by 2-ethylhexyl phenylphosphonic acid and micelles of dinonylnaphthalenesulfonic acid. *Solvent Extr. Ion Exch.* **1998**, *16*, 1161.
27. Otu, E.O. The thermodynamics of synergistic extraction of bismuth by 2-ethylhexyl phenylphosphonic acid and micelles of dinonylnaphthalenesulfonic acid. *Thermochimica Acta* **1999**, *329*, 117.
28. Choppin, G.A.; Morgenstern, A. Thermodynamics of solvent extraction. *Solvent Extr. Ion Exch.* **2000**, *18*, 1029.
29. Danesi, P.R.; Chiarizia, R.; Raieh, M.A.; Scibona, G. Enthalpy and entropy variations in the liquid cation exchange of some lanthanide ions by dinonylnaphthalenesulfonic acid (HD) and bis(2-ethylhexyl)phosphoric acid (HDEHP). *J. Inorg. Nucl. Chem.* **1975**, *37*, 1489.
30. Marcus, Y.; Kertes, S. *Extraction by Compound Formation, in Ion Exchange and solvent Extraction of Metal Complexes*; J. Wiley&sons: New York, 1969; 545.
31. McAlister, D.R.; Dietz, M.L.; Chiarizia, R.; Zalupski, P.R.; Herlinger, A.W. Metal extraction by silyl-substituted diphosphonic acids. II. Effect of alkylene bridge length on aggregation and metal ion extraction behavior. *Sep. Sci. Technol.* **2002**, *31*, 2289.